UTILIZING MACHINE LEARNING FOR CASH FLOW FORECASTING AND ITS INFLUENCE ON STARTUP BUSINESS MODEL ADAPTATION

UTILIZING MACHINE LEARNING FOR CASH FLOW FORECASTING AND ITS INFLUENCE ON STARTUP BUSINESS MODEL ADAPTATION

Authors

  • Benediktus Rolando Universitas Dinamika Bangsa, Indonesia

DOI:

https://doi.org/10.1234/aira.v2i1.59

Keywords:

artificial intelligence, business model innovation, cash flow forecasting, machine learning, startup management

Abstract

This systematic literature review examines the application of machine learning technologies in cash flow prediction and their transformative impact on business model adaptation within startup companies. Following PRISMA guidelines, a comprehensive analysis of 48 high-quality studies published between 2015-2024 was conducted across multiple databases including Scopus, Web of Science, IEEE Xplore, and ACM Digital Library. The research reveals that machine learning algorithms, particularly Long Short-Term Memory networks and deep neural networks, achieve 15-25% improvements in cash flow prediction accuracy compared to traditional statistical methods. Four primary adaptation mechanisms were identified: enhanced financial visibility with 6-8 week lead times for cash shortfall anticipation, improved risk assessment capabilities, strengthened investor relations resulting in 23% higher fundraising success rates, and operational optimization achieving 10-15% working capital efficiency improvements. Sector-specific analysis demonstrates varying adoption patterns, with technology startups showing 91% implementation rates, followed by e-commerce at 78%, service-based at 64%, and manufacturing at 52%. Implementation challenges include data quality issues affecting 84% of deployments, technical expertise gaps in 71% of startup teams, and computational resource constraints. The research establishes that gradual implementation approaches achieve 38% lower failure rates compared to wholesale replacement strategies. Bibliometric analysis reveals evolving research focus from technical algorithm development toward practical business applications and strategic impact assessment. The findings demonstrate that machine learning-enhanced cash flow prediction creates sustainable competitive advantages through improved operational efficiency, enhanced strategic agility, and superior risk management capabilities, positioning these technologies as critical strategic investments for startup competitiveness and long-term sustainability.

References

Abouzakhar, N. (2024). Artificial Intelligence-Based Solution Model for Real Estate Business and Entrepreneurial Operations: Case Study. Proceedings of the European Conference on Innovation and Entrepreneurship, ECIE, 19(1), 1–11. https://doi.org/10.34190/ecie.19.1.2837

Ala’raj, M., Abbod, M. F., & Majdalawieh, M. (2021). Modelling customers credit card behaviour using bidirectional LSTM neural networks. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00461-7

Alirezaie, M., Hoffman, W., Zabihi, P., Rahnama, H., & Pentland, A. (2024). Decentralized Data and Artificial Intelligence Orchestration for Transparent and Efficient Small and Medium-Sized Enterprises Trade Financing. Journal of Risk and Financial Management, 17(1). https://doi.org/10.3390/jrfm17010038

Arsyad, I., Kharisma, D. B., & Wiwoho, J. (2025). Artificial intelligence and Islamic finance industry: problems and oversight. International Journal of Law and Management. https://doi.org/10.1108/IJLMA-07-2024-0236

Belle, V., & Papantonis, I. (2021). Principles and Practice of Explainable Machine Learning. Frontiers in Big Data, 4. https://doi.org/10.3389/fdata.2021.688969

Ghanimi, H. M. A., Painoli, G. K., Contractor, D., Sowjanya, G. N., Lavanya, V. A., & Poon, K. (2024). Analyzing the Impact of Scientific and Technological Innovations on Financial Performance: A PCA-Based Study of an AI Healthcare Startup. Journal of Machine and Computing, 4(4), 1117–1125. https://doi.org/10.53759/7669/jmc202404103

Ingriana, A. (2025). THE INFLUENCE OF E-TRUST ON CONSUMER PURCHASING BEHAVIOR IN E-COMMERCE. 1(3). https://journal.dinamikapublika.id/index.php/Jumder

Ingriana, A., Chondro, J., & Rolando, B. (2024). TRANSFORMASI DIGITAL MODEL BISNIS KREATIF: PERAN SENTRAL E-COMMERCE DAN INOVASI TEKNOLOGI DI INDONESIA (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/JUMDER

Ingriana, A., Gianina Prajitno, G., & Rolando, B. (2024). THE UTILIZATION OF AI AND BIG DATA TECHNOLOGY FOR OPTIMIZING DIGITAL MARKETING STRATEGIES (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/IJEBS

Johan, S. (2021). Enhanced Financial Business Competitiveness by Leveraging Technology and Innovation. CommIT Journal, 15(2), 79–89. https://doi.org/10.21512/commit.v15i2.6968

Judijanto, L., & Rolando, B. (2024). EFFECTIVE STRATEGIES IN HUMAN RESOURCE MANAGEMENT. International Journal Of Financial Economics (IJEFE), 1(3), 747–754.

Kapsis, I. (2020). A Truly Future-Oriented Legal Framework for Fintech in the EU. European Business Law Review, 31(3), 475–514. https://doi.org/10.54648/eulr2020020

Koklev, P. S. (2022). Business Valuation with Machine Learning. Finance: Theory and Practice, 26(5), 132–148. https://doi.org/10.26794/2587-5671-2022-26-5-132-148

Kong, L., Zheng, G., & Brintrup, A. (2024). A federated machine learning approach for order-level risk prediction in Supply Chain Financing. International Journal of Production Economics, 268. https://doi.org/10.1016/j.ijpe.2023.109095

Kumar, S., Lim, W. M., Sivarajah, U., & Kaur, J. (2023). Artificial Intelligence and Blockchain Integration in Business: Trends from a Bibliometric-Content Analysis. Information Systems Frontiers, 25(2), 871–896. https://doi.org/10.1007/s10796-022-10279-0

Maha, V. A., Derian Hartono, S., Prajitno, G. G., & Hartanti, R. (2024). E-COMMERCE LOKAL VS GLOBAL: ANALISIS MODEL BISNIS DAN PREFERENSI KONSUMEN (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/Jumder

Mulyono, H., Hartanti, R., & Rolando, B. (2024). SUARA KONSUMEN DI ERA DIGITAL: BAGAIMANA REVIEW ONLINE MEMBENTUK PERILAKU KONSUMEN DIGITAL (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/JUMDER

Mulyono, H., Ingriana, A., & Hartanti, R. (2024). PERSUASIVE COMMUNICATION IN CONTEMPORARY MARKETING: EFFECTIVE APPROACHES AND BUSINESS RESULTS (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/IJEBS

Nabipour, M., Nayyeri, P., Jabani, H., Mosavi, A., Salwana, E., & Shahab, S. (2020). Deep learning for stock market prediction. Entropy, 22(8). https://doi.org/10.3390/E22080840

Nuraini, I., Mulyono, H., Purnama, B., & Rolando, B. (2024). Pengaruh Lingkungan Kerja, Disiplin Kerja, dan Motivasi Kerja Terhadap Kinerja Karyawan Jasa Travel. Journal of Trends Economics and Accounting Research, 4(4), 968–975.

Pallathadka, H., Mustafa, M., Sanchez, D. T., Sekhar Sajja, G., Gour, S., & Naved, M. (2023). IMPACT OF MACHINE learning ON Management, healthcare AND AGRICULTURE. Materials Today: Proceedings, 80, 2803–2806. https://doi.org/10.1016/j.matpr.2021.07.042

Parisi, L., & Manaog, M. L. (2025). Optimal Machine Learning- and Deep Learning-driven algorithms for predicting the future value of investments: A systematic review and meta-analysis. Engineering Applications of Artificial Intelligence, 142. https://doi.org/10.1016/j.engappai.2024.109924

Putri, L. W. B., & Setiawan, B. L. T. (2025). ANALYZING THE STRATEGIC CONTRIBUTION OF SOCIAL MEDIA INFLUENCERS TO E-COMMERCE MARKETING EFFECTIVENESS. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Qiu, M., Li, R., Cheng, Q., Xu, J., & Zheng, J. (2024). Construction of Financial Fraud Risk Assessment Model Assisted by Artificial Intelligence. Learning and Analytics in Intelligent Systems, 41, 606–613. https://doi.org/10.1007/978-3-031-69457-8_55

Quinonez, C., & Meij, E. (2024). A new era of AI-assisted journalism at Bloomberg. AI Magazine, 45(2), 187–199. https://doi.org/10.1002/aaai.12181

Rahardja, B. V., Rolando, B., Chondro, J., & Laurensia, M. (2024). MENDORONG PERTUMBUHAN E-COMMERCE: PENGARUH PEMASARAN MEDIA SOSIAL TERHADAP KINERJA PENJUALAN (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/JUMDER

Rahman, Md. J., Rana, T., Xu, Y., & Öhman, P. (2024). Bridging BI and AI Enhancing Operational Efficiency in the Chinese Financial Sector. Journal of Global Information Management, 32(1). https://doi.org/10.4018/JGIM.366871

Rolando, B. (2024). CULTURAL ADAPTATION AND AUTOMATED SYSTEMS IN E-COMMERCE COPYWRITING: OPTIMIZING CONVERSION RATES IN THE INDONESIAN MARKET (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/IJEBS

Rolando, B., Chandra, C. K., & Widjaja, A. F. (2025). TECHNOLOGICAL ADVANCEMENTS AS KEY DRIVERS IN THE TRANSFORMATION OF MODERN E-COMMERCE ECOSYSTEMS. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Rolando, B., & Ingriana, A. (2024). SUSTAINABLE BUSINESS MODELS IN THE GREEN ENERGY SECTOR: CREATING GREEN JOBS THROUGH RENEWABLE ENERGY TECHNOLOGY INNOVATION (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/IJEBS

Rolando, B., Nur Azizah, F., Karaniya Wigayha, C., Bangsa, D., Jl Jendral Sudirman, J., Jambi Selatan, K., & Jambi, K. (2024). Pengaruh Viral Marketing Shopee Affiliate, Kualitas Produk, dan Harga Terhadap Minat Beli Konsumen Shopee. https://doi.org/10.47065/arbitrase.v5i2.2167

Rolando, B., & Sunara, N. T. (2024). Social Media Marketing’s Effect on Purchase Intentions for Puma: Mediation by Brand Image, Awareness, and Equity. Journal of Business and Economics Research (JBE), 5(3), 340–351.

Rolando, B., & Wigayha, C. K. (2024). Pengaruh E-Wom Terhadap Keputusan Pembelian Online: Studi Kasus Pada Pelanggan Aplikasi Kopi Kenangan. Jurnal Manajemen Dan Kewirausahaan (JUMAWA), 1(4), 193–210.

Sanz, J. L. C., & Zhu, Y. (2021). Toward Scalable Artificial Intelligence in Finance. Proceedings - 2021 IEEE International Conference on Services Computing, SCC 2021, 460–469. https://doi.org/10.1109/SCC53864.2021.00067

Sarker, I. H. (2022). AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. SN Computer Science, 3(2). https://doi.org/10.1007/s42979-022-01043-x

Sarker, I. H. (2024). LLM potentiality and awareness: a position paper from the perspective of trustworthy and responsible AI modeling. Discover Artificial Intelligence, 4(1). https://doi.org/10.1007/s44163-024-00129-0

Shah, T., Shekokar, K., Barve, A., & Khandare, P. (2024). An Analytical Review: Explainable AI for decision making in finance using Machine Learning. 2024 Parul International Conference on Engineering and Technology, PICET 2024. https://doi.org/10.1109/PICET60765.2024.10716075

Tan, D. M., & Alexia, K. R. (2025). THE INFLUENCE OF TIKTOK AFFILIATE CONTENT QUALITY AND CREDIBILITY ON PURCHASE DECISIONS VIA THE YELLOW BASKET FEATURE. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Tufail, S., Riggs, H., Tariq, M., & Sarwat, A. I. (2023). Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms. Electronics (Switzerland), 12(8). https://doi.org/10.3390/electronics12081789

Vaiyapuri, T., Priyadarshini, K., Hemlathadhevi, A., Dhamodaran, M., Dutta, A. K., Pustokhina, I. V, & Pustokhin, D. A. (2022). Intelligent Feature Selection with Deep Learning Based Financial Risk Assessment Model. Computers, Materials and Continua, 72(2), 2429–2444. https://doi.org/10.32604/cmc.2022.026204

Widjaja, A. F. (2025). FACTORS INFLUENCING PURCHASE INTENTION IN E-COMMERCE: AN ANALYSIS OF BRAND IMAGE, PRODUCT QUALITY, AND PRICE. 1(3). https://journal.dinamikapublika.id/index.php/Jumder

Wigayha, C. K., Rolando, B., & Wijaya, A. J. (2024). PELUANG BISNIS DALAM INDUSTRI HIJAU DAN ENERGI TERBARUKAN (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/Jumder

Wigayha, C. K., Rolando, B., & Wijaya, A. J. (2025). A DEMOGRAPHIC ANALYSIS OF CONSUMER BEHAVIORAL PATTERNS ON DIGITAL E-COMMERCE PLATFORMS. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Winata, V., & Arma, O. (2025). ANALYZING THE EFFECT OF E-WALLET USABILITY ON CUSTOMER RETENTION IN MOBILE PAYMENT APPS. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Zahran, A. M. (2025). THE IMPACT OF MARKETING STRATEGIES ON THE SUCCESS OF THE FAST FASHION INDUSTRY: A SYSTEMATIC REVIEW. 1(3). https://journal.dinamikapublika.id/index.php/Jumder

Downloads

Published

2023-01-31

How to Cite

Rolando, B. (2023). UTILIZING MACHINE LEARNING FOR CASH FLOW FORECASTING AND ITS INFLUENCE ON STARTUP BUSINESS MODEL ADAPTATION . AIRA (Artificial Intelligence Research and Applied Learning), 2(1), 52–72. https://doi.org/10.1234/aira.v2i1.59

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Loading...