MARKET TREND PREDICTION IN DIGITAL BUSINESS THROUGH MACHINE LEARNING INTEGRATION

MARKET TREND PREDICTION IN DIGITAL BUSINESS THROUGH MACHINE LEARNING INTEGRATION

Authors

  • Herry Mulyono Universitas Dinamika Bangsa, Indonesia

DOI:

https://doi.org/10.1234/aira.v3i1.66

Keywords:

Machine Learning, Market Trend, Digital Business

Abstract

In the rapidly evolving digital economy, businesses are increasingly relying on data-driven strategies to remain competitive. This essay explores the integration of machine learning (ML) techniques to predict market trends in digital business environments. The key issue addressed is the challenge of identifying and responding to dynamic market shifts in real-time, which traditional forecasting methods often fail to handle effectively. The objective of this study is to examine how ML models can process large-scale, complex datasets to generate accurate and timely predictions. The method involves a qualitative review of various ML algorithms—such as decision trees, random forests, and neural networks—and their application in market trend analysis. The discussion highlights the strengths and limitations of each approach, emphasizing the importance of data quality and contextual relevance. The results indicate that ML offers significant advantages in forecasting market behavior, enabling businesses to enhance decision-making, optimize resource allocation, and gain a strategic edge. This integration not only improves operational efficiency but also supports proactive responses to consumer demand and market volatility. The findings suggest that with continued development, ML will become a core component of future business intelligence systems.

References

Ahmadian, F., Khosravi, P., & Fathi, M. (2020). Offshore topside weight prediction using data science. In Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. https://doi.org/10.1115/omae2020-19210

Ali, A. (2024). Using machine learning to evaluate Industry 4.0 maturity: A comprehensive analysis highlighting Lean's impact on digital transformation. Itegam - Journal of Engineering and Technology for Industrial Applications, 10(50). https://doi.org/10.5935/jetia.v10i50.1262

Alim, R. K., & Shukla, R. (2020). Sampling-based estimation method for parameter estimation in big data business era. Journal of Advances in Management Research, 17(1), 57-72. https://doi.org/10.1108/jamr-05-2020-0072

Asniar, M., & Surendro, K. (2019). Predictive analytics for predicting customer behavior. In Proceedings of the International Conference on Artificial Intelligence and Information Technology. https://doi.org/10.1109/icaiit.2019.8834571

Bhavya, N., Rathi, R. R., & Yadav, A. (2022). Machine learning-based stock price prediction for business intelligence. In Advances in data mining and management. https://doi.org/10.4018/978-1-6684-4246-3.ch013

Cardona-Acevedo, F., et al. (2025). Applications of machine learning (ML) in the context of marketing: A bibliometric approach. F1000Research. https://doi.org/10.12688/f1000research.160010.2

Cruz, A., et al. (2024). Revealing user behavior trends through time-series analysis of Google Analytics data. In Proceedings of the IEEE Conference on Communications. https://doi.org/10.1109/colcom62950.2024.10720277

Durga, S., et al. (2023). Mining social media data for sentiment analysis and trend prediction. In Proceedings of the IEEE UPCON Conference. https://doi.org/10.1109/upcon59197.2023.10434704

Filho, L., de Oliveira, L. A., & Mello, R. (2024). MAEVE: An agnostic dataset generator framework for predicting customer behavior in digital marketing. In Proceedings of the Conference on User Modeling. https://doi.org/10.5220/0013021900003838

Gao, Y., & Vo, T. (2023). Operational solution framework: Leveraging machine learning and natural language processing for automatic well test validation. SPE International Conference on Data Science and Machine Learning in Oil and Gas. https://doi.org/10.2118/217294-ms

Gulia, A., et al. (2024). Multimedia data in healthcare system. In Machine Learning and Data Mining Applications. https://doi.org/10.1002/9781119786443.ch3

Gunawan, G., Utomo, A. S. A., & Benediktus, H. S. (2021). Optimization of shipyard layout with material handling cost as the main parameter using genetic algorithm. AIP Conference Proceedings, 2376(1).

https://doi.org/10.1109/iccci56745.2023.10128498

Hung, Y. (2019). Investigating how the cloud computing transforms the development of industries. IEEE Access, 7, 87199-87214. https://doi.org/10.1109/access.2019.2958973

Ingriana, A. (2025). THE INFLUENCE OF E-TRUST ON CONSUMER PURCHASING BEHAVIOR IN E-COMMERCE. 1(3). https://journal.dinamikapublika.id/index.php/Jumder

Ingriana, A., Chondro, J., & Rolando, B. (2024). TRANSFORMASI DIGITAL MODEL BISNIS KREATIF: PERAN SENTRAL E-COMMERCE DAN INOVASI TEKNOLOGI DI INDONESIA (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/JUMDER

Ingriana, A., Gianina Prajitno, G., & Rolando, B. (2024). THE UTILIZATION OF AI AND BIG DATA TECHNOLOGY FOR OPTIMIZING DIGITAL MARKETING STRATEGIES (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/IJEBS

Ingriana, A., Hartanti, R., Mulyono, H., & Rolando, B. (2024). Pemberdayaan E-Commerce: Mengidentifikasi Faktor Kunci Dalam Motivasi Pembelian Online. Jurnal Manajemen Dan Kewirausahaan (JUMAWA), 1(3), 101–110.

Javaid, A., et al. (2022). Explainable artificial intelligence solution for online retail. Computers, Materials & Continua, 69(2), 1777-1795. https://doi.org/10.32604/cmc.2022.022984

Kuppuswamy, I., et al. (2024). Data mining for predictive analytics. In Research Advances in Data Mining. https://doi.org/10.1002/9781394227990.ch1

Lee, K., et al. (2022). Artificial intelligence adoption in QSR industry. Proceedings of the International Conference on Advanced Technology. https://doi.org/10.1145/3549843.3549859

Ma, H., & Sun, Y. (2020). Machine learning and AI in marketing – Connecting computing power to human insights. International Journal of Research in Marketing, 37(2), 344-355. https://doi.org/10.1016/j.ijresmar.2020.04.005

Maha, V. A., Derian Hartono, S., Prajitno, G. G., & Hartanti, R. (2024). E-COMMERCE LOKAL VS GLOBAL: ANALISIS MODEL BISNIS DAN PREFERENSI KONSUMEN (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/Jumder

Mbunge, E., et al. (2022). Prediction of box-office success: A review of trends and machine learning computational models. International Journal of Business Intelligence and Data Mining, 18(3), 1-15. https://doi.org/10.1504/ijbidm.2022.120825

Milan, D., et al. (2023). Impact of AI on social marketing and its usage in social media: A review analysis. In Proceedings of the IEEE Conference on Computational Intelligence. https://doi.org/10.1109/iccpct58313.2023.10245676

Mulyono, H., & Rolando, B. (2024). Savoring The Success: Cultivating Innovation And Creativity For Indonesian Culinary MSMEs Growth. Economics and Business Journal (ECBIS), 2(4), 413–428.

Mulyono, H., Hartanti, R., & Rolando, B. (2024). SUARA KONSUMEN DI ERA DIGITAL: BAGAIMANA REVIEW ONLINE MEMBENTUK PERILAKU KONSUMEN DIGITAL (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/JUMDER

Mulyono, H., Ingriana, A., & Hartanti, R. (2024). PERSUASIVE COMMUNICATION IN CONTEMPORARY MARKETING: EFFECTIVE APPROACHES AND BUSINESS RESULTS (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/IJEBS

Nagaraj, S., et al. (2023). E-commerce customer churn prediction scheme based on customer behaviour using machine learning. In Proceedings of the IEEE International Conference on Computational Intelligence.

Pazou, G., et al. (2025). Predicting the rate of aflatoxin contamination in the white corn value chain. In Advances in Agricultural Chemistry. https://doi.org/10.1007/978-3031-86493-3_17

Peralta, E. F., et al. (2025). Evolution, topics and relevant research methodologies in business intelligence and data analysis in the academic management of higher education institutions: A literature review. Results in Engineering, 10, 103782. https://doi.org/10.1016/j.rineng.2024.103782

Purnama, A. N., et al. (2024). Research trends in perceived behavioral control from a bibliometric perspective. In Proceedings of the IEEE International Conference on Information Technology. https://doi.org/10.1109/iccit62134.2024.10701216

Putri, L. W. B., & Setiawan, B. L. T. (2025). ANALYZING THE STRATEGIC CONTRIBUTION OF SOCIAL MEDIA INFLUENCERS TO E-COMMERCE MARKETING EFFECTIVENESS. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Rahardja, B. V., Rolando, B., Chondro, J., & Laurensia, M. (2024). MENDORONG PERTUMBUHAN E-COMMERCE: PENGARUH PEMASARAN MEDIA SOSIAL TERHADAP KINERJA PENJUALAN (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/JUMDER

Rolando, B. (2018). Tingkat Kesiapan Implementasi Smart Governance di Kota Palangka Raya. UAJY.

Rolando, B. (2024). CULTURAL ADAPTATION AND AUTOMATED SYSTEMS IN E-COMMERCE COPYWRITING: OPTIMIZING CONVERSION RATES IN THE INDONESIAN MARKET (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/IJEBS

Rolando, B., & Ingriana, A. (2024). SUSTAINABLE BUSINESS MODELS IN THE GREEN ENERGY SECTOR: CREATING GREEN JOBS THROUGH RENEWABLE ENERGY TECHNOLOGY INNOVATION (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/IJEBS

Rolando, B., & Wigayha, C. K. (2024). Pengaruh E-Wom Terhadap Keputusan Pembelian Online: Studi Kasus Pada Pelanggan Aplikasi Kopi Kenangan. Jurnal Manajemen Dan Kewirausahaan (JUMAWA), 1(4), 193–210.

Rolando, B., Chandra, C. K., & Widjaja, A. F. (2025). TECHNOLOGICAL ADVANCEMENTS AS KEY DRIVERS IN THE TRANSFORMATION OF MODERN E-COMMERCE ECOSYSTEMS. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Rolando, B., Nur Azizah, F., Karaniya Wigayha, C., Bangsa, D., Jl Jendral Sudirman, J., Jambi Selatan, K., & Jambi, K. (2024). Pengaruh Viral Marketing Shopee Affiliate, Kualitas Produk, dan Harga Terhadap Minat Beli Konsumen Shopee. https://doi.org/10.47065/arbitrase.v5i2.2167

Salman, S., & İbrahim, M. (2020). Price prediction of different cryptocurrencies using technical trade indicators and machine learning. IOP Conference Series: Materials Science and Engineering, 928(3), 032007. https://doi.org/10.1088/1757-899x/928/3/032007

Shrivastava, V., et al. (2023). Hybrid models for predicting cryptocurrency price using financial and non-financial indicators. In Proceedings of the International Conference on Computer Science. https://doi.org/10.1007/978-981-99-8696-5_13

Singhal, S., et al. (2022). Integration of IoT for industry automation using machine learning technique. Proceedings of the IEEE Integrated Conference. https://doi.org/10.1109/icdi57181.2022.10007229

Tan, D. M., & Alexia, K. R. (2025). THE INFLUENCE OF TIKTOK AFFILIATE CONTENT QUALITY AND CREDIBILITY ON PURCHASE DECISIONS VIA THE YELLOW BASKET FEATURE. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Tomlinson, J., et al. (2022). A roadmap to accelerate OSDU adoption. The Leading Edge, 41(9), 907-913. https://doi.org/10.1190/tle41090647.1

Widjaja, A. F. (2025). FACTORS INFLUENCING PURCHASE INTENTION IN E-COMMERCE: AN ANALYSIS OF BRAND IMAGE, PRODUCT QUALITY, AND PRICE. 1(3). https://journal.dinamikapublika.id/index.php/Jumder

Wigayha, C. K., Rolando, B., & Wijaya, A. J. (2024). PELUANG BISNIS DALAM INDUSTRI HIJAU DAN ENERGI TERBARUKAN (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/Jumder

Wigayha, C. K., Rolando, B., & Wijaya, A. J. (2025). A DEMOGRAPHIC ANALYSIS OF CONSUMER BEHAVIORAL PATTERNS ON DIGITAL E-COMMERCE PLATFORMS. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Winata, V., & Arma, O. (2025). ANALYZING THE EFFECT OF E-WALLET USABILITY ON CUSTOMER RETENTION IN MOBILE PAYMENT APPS. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Zahran, A. M. (2025). THE IMPACT OF MARKETING STRATEGIES ON THE SUCCESS OF THE FAST FASHION INDUSTRY: A SYSTEMATIC REVIEW. 1(3). https://journal.dinamikapublika.id/index.php/Jumder

Zhu, W., et al. (2016). Business applications of predictive modeling at scale. ACM Transactions on Intelligent Systems and Technology, 7(4), 1-23. https://doi.org/10.1145/2939672.2945388

Downloads

Published

2024-01-31

How to Cite

Mulyono, H. (2024). MARKET TREND PREDICTION IN DIGITAL BUSINESS THROUGH MACHINE LEARNING INTEGRATION. AIRA (Artificial Intelligence Research and Applied Learning), 3(1), 42–53. https://doi.org/10.1234/aira.v3i1.66

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Loading...