CRITICAL REVIEW OF OPTIMIZATION MODELS AND CROWDSOURCING STRATEGIES FOR LAST-MILE LOGISTICS EFFICIENCY IN MEGALOPOLITAN AREAS

CRITICAL REVIEW OF OPTIMIZATION MODELS AND CROWDSOURCING STRATEGIES FOR LAST-MILE LOGISTICS EFFICIENCY IN MEGALOPOLITAN AREAS

Authors

  • Kenny Ryans Alexia Universitas Bunda Mulia, Indonesia
  • Alberta Ingriana Universitas Dinamika Bangsa, Indonesia

Keywords:

Crowdsourcing, E-commerce, Last-Mile, Optimization, Urban Logistics

Abstract

The explosive growth of e-commerce, coupled with rapid urbanization, has rendered last-mile logistics (LML) in megalopolitan areas a critical nexus of inefficiency, cost, and environmental strain. This systematic literature review (SLR) addresses the acute challenges of urban LML by synthesizing contemporary research (2020–2024) on the integration of advanced optimization models and crowdsourcing strategies. The objective is to identify dominant models, understand their integration with crowdsourced labor, and evaluate their impact on logistics efficiency. This review adheres to the PRISMA 2020 guidelines, analyzing 16 high-impact studies retrieved from the Scopus and Web of Science databases. The synthesis reveals two significant trends. First, optimization has evolved beyond classic Vehicle Routing Problems (VRPs) to embrace AI-driven dynamic routing and complex Mixed-Integer Linear Programming (MILP) formulations for managing hybrid assets, such as truck-drone systems (Shavarani et al., 2023; Madani et al., 2023). Second, the integration of crowdsourcing has matured from a simple gig-economy model into a sophisticated socio-technical optimization challenge, requiring novel frameworks that account for the behavioral uncertainty of workers, such as rejection probability and incentive design (Hou et al., 2022; Huang et al., 2020). The findings confirm that these integrated models yield significant improvements in cost-effectiveness, delivery success rates, and sustainability (Cao et al., 2025; Chen et al., 2022; Hou et al., 2022). However, this review also highlights persistent challenges in computational scalability and a significant research gap concerning the social sustainability and equity of the crowdsourced workforce (Lee & Song, 2024).

References

Arma, O. (2022). THE IMPACT OF VIRTUAL ANCHOR PERCEIVED WARMTH AND COMPETENCE ON CONSUMER PURCHASE INTENTION IN DIGITAL MARKETING. Artificial Intelligence Research and Applied Learning, 1(1). https://journal.dinamikapublika.id/index.php/aira

Cao, X., Da, Z., & Wang, X. (2025). Order fulfillment planning with crowdsourcing integration. Scientific Reports, 15(1), Article 2345.

Cebeci, M. S., de Bok, M., & Tavasszy, L. A. (2023). The changing role and behaviour of consumers in last mile logistics services: A review. Transport Reviews, 43(6), 849-871.

Chen, X., Wang, T., & Marlin, M. (2022). Same-day delivery with fair customer service: Integrating crowdsourcing and parcel lockers. International Journal of Production Economics, 251, 108542.

Davila, A., & Daganzo, C.F. (2023). The effect of e-commerce on urban congestion and emissions: A quantitative assessment. Transportation Research Part D: Transport and Environment, 112, 103488.

Dupljanin, Đ., Mirkovic, M., Dumnić, S., & Culibrk, D. (2020). Urban crowdsourced last mile delivery: Mode of transport effects on fleet performance. IEEE Transactions on Intelligent Transportation Systems, 21(3), 1124-1135.

Ghani, M. Z., & R. L. R. (2022). The VRP and its variants in last-mile logistics: A review of recent trends. Operations Research Perspectives, 9, 100234.

Hou, S., Gao, J., & Wang, C. (2022). Optimization framework for crowd-sourced delivery services with the consideration of shippers' acceptance uncertainties. Computers & Operations Research, 137, 105521.

Huang, L., Xie, G., Blenkinsopp, J., & Huang, R. (2020). Crowdsourcing for sustainable urban logistics: Exploring the factors influencing crowd workers' participative behavior. Sustainability, 12(8), 3091.

Ieva, S., Bilenchi, I., Gramegna, F., Pinto, A., Scioscia, F., Ruta, M., & Loseto, G. (2025). Enhancing last-mile logistics: AI-driven fleet optimization, mixed reality, and large language model assistants for warehouse operations. Sensors, 25(9), 2696.

Ingriana, A., Prajitno, G. G., & Rolando, B. (2024). THE UTILIZATION OF AI AND BIG DATA TECHNOLOGY FOR OPTIMIZING DIGITAL MARKETING STRATEGIES. International Journal of Economics And Business Studies, 1(1), 21–42. https://doi.org/10.1234/IJEBS.V1I1.1

Karakikes, I., & Nathanail, E. (2022). Assessing the impacts of crowdshipping using public transport: A case study in a middle-sized Greek city. Urban Science, 6(1), 4.

Lee, J., & Song, B. D. (2024). The gig economy and social sustainability: Labor practices in crowdsourced delivery platforms. Journal of Business Ethics, 190(2), 245-263.

Lin, C., & J. R. (2023). Infrastructure and logistics performance in developing economies: A systematic review. Transport Policy, 140, 88-102.

Madani, M., Li, X., & Boyles, S. D. (2023). An integer linear programming formulation for a multi-visit and flexible launch and retrieval location hybrid truck-drone delivery system (HTDDS-MVLRL). Transportation Research Part E: Logistics and Transportation Review, 178, 103254.

Maha, V. A., Hartono, S. D., Prajitno, G. G., & Hartanti, R. (2025). E-COMMERCE LOKAL VS GLOBAL: ANALISIS MODEL BISNIS DAN PREFERENSI KONSUMEN. JUMDER: Jurnal Bisnis Digital Dan Ekonomi Kreatif, 1(1), 21–44. https://doi.org/10.1234/JUMDER.V1I1.9

Mardhiyah, A. S. (2022). TECHNOLOGY’S ROLE IN RESHAPING THE E-COMMERCE LANDSCAPE. Artificial Intelligence Research and Applied Learning, 1(2). https://journal.dinamikapublika.id/index.php/aira

Mohammad, W. A. M., Diab, Y. N., Elomri, A., & Triki, C. (2023). Innovative solutions in last mile delivery: concepts, practices, challenges, and future directions. Supply Chain Forum: An International Journal, 24(2), 1-20.

Mulyono, H. (2024). Pengaruh Diskon Tanggal Kembar Pada E-Commerce Terhadap Keputusan Pembelian | International Journal of Economics And Business Studies. International Journal of Economics And Business Studies (IJEBS), 1(1), 1–20. https://journal.dinamikapublika.id/index.php/IJEBS/article/view/2

Mulyono, H., Hartanti, R., & Rolando, B. (2025). SUARA KONSUMEN DI ERA DIGITAL: BAGAIMANA REVIEW ONLINE MEMBENTUK PERILAKU KONSUMEN DIGITAL. JUMDER: Jurnal Bisnis Digital Dan Ekonomi Kreatif, 1(1), 1–20. https://doi.org/10.1234/JUMDER.V1I1.10

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D.,... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372.

Perera, S., & S. R. R. (2022). Collaborative logistics models for e-commerce: A review. International Journal of Production Economics, 245, 108391.

Putri, L. W. B. (2022). TRACING THE DEVELOPMENT OF MARKETING IN THE AI ERA: A COMPREHENSIVE LITERATURE ANALYSIS. Artificial Intelligence Research and Applied Learning, 1(1). https://journal.dinamikapublika.id/index.php/aira

Rahardja, B. V., Rolando, B., Chondro, J., & Laurensia, M. (2025). MENDORONG PERTUMBUHAN E-COMMERCE: PENGARUH PEMASARAN MEDIA SOSIAL TERHADAP KINERJA PENJUALAN. JUMDER: Jurnal Bisnis Digital Dan Ekonomi Kreatif, 1(1), 45–61. https://doi.org/10.1234/JUMDER.V1I1.6

Rodrigue, J. P. (2024). The geography of transport systems (6th ed.). Routledge.

Rolando, B. (2024). CULTURAL ADAPTATION AND AUTOMATED SYSTEMS IN E-COMMERCE COPYWRITING: OPTIMIZING CONVERSION RATES IN THE INDONESIAN MARKET. International Journal of Economics And Business Studies, 1(1), 57–86. https://doi.org/10.1234/IJEBS.V1I1.4

Rolando, B., & Ingriana, A. (2024). SUSTAINABLE BUSINESS MODELS IN THE GREEN ENERGY SECTOR: CREATING GREEN JOBS THROUGH RENEWABLE ENERGY TECHNOLOGY INNOVATION. International Journal of Economics And Business Studies, 1(1), 43–56. https://doi.org/10.1234/IJEBS.V1I1.3

Rolando, B., & Mulyono, H. (2025a). Diverse Learning Environments on Students Entrepreneurial Intentions. International Journal of Pedagogy and Teacher Education-9, 9(1), 119–137. https://doi.org/10.20961/ijpte.v9i1.98592

Rolando, B., & Mulyono, H. (2025b). E-Commerce as a Catalyst for Digital Economy Development: A Study of Marketing Strategies and Their Impact. Journal of Distribution Science, 23(4), 61–79. https://doi.org/10.15722/jds.23.04.202504.61

Rolando, B., Ariyanto, K., Alexia, K. R., & Hartanti, R. (2022). PERAN AI DAN BIG DATA DALAM MENGOPTIMALKAN STRATEGI PEMASARAN DIGITAL. Artificial Intelligence Research and Applied Learning, 1(1). https://journal.dinamikapublika.id/index.php/aira

Rolando, B., Chandra, C. K., & Widjaja, A. F. (2025). TECHNOLOGICAL ADVANCEMENTS AS KEY DRIVERS IN THE TRANSFORMATION OF MODERN E-COMMERCE ECOSYSTEMS. 1(2). https://journal.dinamikapublika.id/index.php/Jumder

Rolando, B., Widjaja, A. F., & Chandra, C. K. (2025). UNDERSTANDING FASHION PURCHASING DECISIONS: A SYSTEMATIC REVIEW OF CONSUMER BEHAVIOR IN RETAIL (Vol. 1, Issue 1). https://journal.dinamikapublika.id/index.php/mosaic

Setiawan, B. L. T. (2022). ANALISIS PERAN AUGMENTED REALITY (AR) DALAM PEMASARAN DAN DAMPAKNYA PADA PERILAKU KONSUMEN. Artificial Intelligence Research and Applied Learning, 1(1). https://journal.dinamikapublika.id/index.php/aira

Shahin, R., Shahin, A., & Dulebenets, M. A. (2024). A survey of crowdsourcing in last-mile delivery in the optimization literature. Research in Transportation Business & Management, 50, 101034.

Shavarani, A., Golara, S., & Zanjirani Farahani, R. (2023). A new MILP formulation and a branch-and-price-and-cut algorithm for the truck-drone delivery routing problem with time windows. European Journal of Operational Research, 310(2), 567-583.

Silva, V., Amaral, A., & Fontes, T. (2023). Sustainable urban last-mile logistics: A systematic literature review. Sustainability, 15(3), 2285.

Tan, D. M. (2022). A SYSTEMATIC REVIEW OF THE AI-POWERED MARKETING REVOLUTION: FROM TRADITIONAL TO DATA-DRIVEN APPROACHES. Artificial Intelligence Research and Applied Learning, 1(2). https://journal.dinamikapublika.id/index.php/aira

Toktas, D., Ülkü, M. A., & Habib, M. A. (2024). Toward greener supply chains by decarbonizing city logistics: A systematic literature review and research pathways. International Journal of Logistics Management, 35(4), 1081-1105.

Wang, W., Chen, J., & Li, Z. (2024). Multiobjective optimization for planning the service areas of smart parcel locker facilities in logistics last mile delivery. Sustainability, 16(5), 1930.

Widjaja, A. F. (2025). FACTORS INFLUENCING PURCHASE INTENTION IN E-COMMERCE: AN ANALYSIS OF BRAND IMAGE, PRODUCT QUALITY, AND PRICE. 1(3). https://journal.dinamikapublika.id/index.php/Jumder

Wijaya, A. J. (2022). PERAN DAN IMPLEMENTASI TEKNOLOGI KECERDASAN BUATAN DALAM PENGALAMAN KONSUMEN E-COMMERCE: SEBUAH TINJAUAN SISTEMATIS. Artificial Intelligence Research and Applied Learning, 1(1). https://journal.dinamikapublika.id/index.php/aira

Winata, V. (2022). OPTIMIZING BIG DATA PROCESSING THROUGH ARTIFICIAL INTELLIGENCE: A SYSTEMATIC LITERATURE REVIEW. Artificial Intelligence Research and Applied Learning, 1(2). https://journal.dinamikapublika.id/index.php/aira

World Economic Forum. (2024). The future of global e-commerce: Projections and sustainability challenges. World Economic Forum.

Yu, H., Wang, S., & J. F. (2024). A dynamic multi-echelon optimization for urban e-grocery last-mile deliveries with grocery lockers and electric cargo bikes. Computers & Industrial Engineering, 189, 109923.

Zhang, Q., & Demir, E. (2025). Parcel locker solutions for last mile delivery: A systematic literature review and future research directions. Future Transportation, 5(1), 1-22.

Downloads

Published

2025-11-30

How to Cite

Alexia, K. R., & Ingriana, A. (2025). CRITICAL REVIEW OF OPTIMIZATION MODELS AND CROWDSOURCING STRATEGIES FOR LAST-MILE LOGISTICS EFFICIENCY IN MEGALOPOLITAN AREAS. LOGIS (Logistics, Operations and Global Integration Studies), 1(2), 1–11. Retrieved from https://journal.dinamikapublika.id/index.php/LOGIS/article/view/139
Loading...